
Time: 3 hrs.

Max. Marks:100

Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.

PART – A

- 1 a. With an explain and neat sketch explain the following:
 - i) Oriented graph ii) Tree iii) Co-tree iv) Tree branch path incidence matrix. (10 Marks)
 - b. For the network graph shown below, consider elements 1, 2, 3 as tree branches and node as reference and obtain:
 - i) Bus incidence matrix
 - ii) Branch path incidence matrix. There from show that $A_bK^T = I$.

(10 Marks)

2 a. For the system line data given below, obtain the Y_{BOS} by singular transformation select bus 6 as reference bus and a tree with elements 6 and 7 as links. Verify the results obtained by the methods of inspection.

Line no.	1	2	3	4	5	6	7
Bus code p-q	1-6	2-6	2 - 5	1 – 3	3 – 4	4 – 5	3 – 6
Admittance in pu	30	45	20	10	25	15	35

(10 Marks)

b. Find Z_{BUS} for the system whose reactance diagram is shown below: All the impedances are marked in p.u.

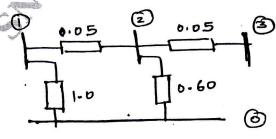


Fig.Q2(b) 1 of 2

(10 Marks)

Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice.

- 3 a. Explain the algorithm of Gauss Seidel Load Flow method for a power system having all types of buses. (10 Marks)
 - b. Following is the data of power system for load flow solution

r system for load now solution.						
BUS codes	Line Data Admittance					
1 – 2	2 – 8j					
1 – 3	1 − 4j					
2 – 3	0.666 – 2.664j					
2 – 4	1-4j					
3 – 4	2-8j					

BUS Data

	4 4 4	//	- www.com.co.dor		
BUS code	P	Q	V	Remarks	
1	1 2 Z	_	1.06	Slack	
2	0.5	0	1.04 + j0	PV	
3	0.4	0.3	ABA	PQ	
4	0.3	0.1	8 ³ > −	PQ	

Reactive power constraint at bus 2 is $0.1 \le Q_2 \le 1.0$ p.u. Determine the voltage at the end of first iteration using Gauss – Seidel method. Assume acceleration factor $\alpha = 1.6$. (10 Marks)

- a. Explain with the help of algorithm the computational procedure for load flow solution using NR method, when the system is containing all types of buses. (10 Marks)
 - b. Compare Newton Raphson method, Gauss Seidel iterative method.

(06 Marks)

c. Mention the approximations made FDLF method for load flow analysis.

(04 Marks)

(10 Marks)

PART – B

- 5 a. Explain the method of equal incremental costs for the economic operation with the transmission losses considered. (10 Marks)
 - b. Two generators are coupled through a tie line. Load is at the bus of generator 2, it is known that a transfers of 100MW from generator 1 over the tie line means a transmission loss of 10WM. The incremental costs are

$$\frac{df_1}{dP_1} = 0.02P_1 + 16 \qquad \frac{dF_2}{dP_2} = 0.04P_2 + 20$$

Find the optimum schedule, total generation and demand if $\lambda = 25 \text{Rs/Mwh}$.

- 6 a. What are transmission loss coefficients obtain the general expression of Bmn with usual notations. (10 Marks)
 - b. Explain the mathematical formulation and solution procedure of optimal scheduling of hydro-thermal plants. (10 Marks)
- 7 a. Explain various methods employed for improving the transient stability. (10 Marks)
 - b. Explain method of finding the transient stability of a given power system using Milne's predictor corrector method. (10 Marks)
- 8 a. Consider the system having following parameters:

 $P_m = 3.0$ pu; $\gamma_1 P_m = 1.2$ pu; $v_2 P_m = 2.0$, H = 3.0; f = 60Hz, $\Delta t = 0.02$ sec, $p_e = 1.5$ pu. Determine rotor angle and angular frequency at the end of 0.2 seconds using modified Euler's method. (10 Marks)

- b. Explain the representation the following for power system stability studies
 - i) Exciters (Type 1 system) ii) Governors.

(10 Marks)